Monday, May 19, 2014

Toward a fluid dynamics model of bicycle pelotons


The subject of this post is quite different from that of the last one, where I referred to spheres dropping in a viscous fluid, and proposed an experiment to study convection properties of spheres in such a viscous fluid. I suggested such a study could give some insight into the self-organizing convection dynamics of pelotons.

In this post, I discuss how a peloton IS a fluid, not how it moves through a viscous fluid as in my last post, but how it is a viscous fluid and, viewed in this way, what some of its properties are. Here I propose a model for quantifying laminar and turbulent flow in pelotons.

In fluid dynamics, the Reynolds number is a dimensionless value by which a phase change from laminar (streamlined) flow to turbulent flow may be identified [1]. A very nice explanation of the Reynolds number can be found here: http://www.youtube.com/watch?v=kmjFdBxbV08

To develop an equivalent to a Reynolds number for pelotons, we first must show viscosity in pelotons.

Below is an illustration I've photocopied from [a] and on which I have overlaid some parameter descriptions (in red italics) as to how they might apply to pelotons.



Figure 1. Copy of Figure 15.23 at page 439 of [a], with notations of mine in red italics.

Below is a screen-shot of the Netlogo interface, and the parameters I've used to develop my model.


Figure 2. Screen capture of my Netlogo peloton fluid dynamics model, publicly available at

In summary:

                                              n (viscosity) = Fl / Av

where:
  • F is pedal force at given speed -- equivalent to external force moving top surface of liquid
  • l is mean lateral distance between cyclists -- equivalent to distance between solid surfaces
  • A is area of one side of peloton, or line of riders -- equivalent to area of upper plate
  • v is relative passing speed -- equivalent to the distance displacement (delta x) / second, determined   by cyclists' actual passing speed - mean peloton speed

                                      Reynolds number =  pdv / n
where:
  • p is peloton density -- equivalent to fluid density in kg m^3
  • d is maximum width of the peloton -- equivalent to tube diameter in m
  • v is mean peloton speed in m/s -- equivalent to mean fluid velocity along direction of flow
To flesh this out, the following are the notes I've included in the "Info" section of my Netlogo model:

Introduction

Riders in a peloton, or group of cyclists, are coupled by the energy savings benefit of drafting. By drafting, riders in zones of reduced air-pressure behind others expend less energy than those who are facing the wind. By coupling, cyclists share and distribute energetic resources among the group as a whole. In this sense, drafting may be thought of as an attractive or cohesive force among riders.

In mass-start bicycle racing, pelotons may consist of up to 200 riders. In such groups, cyclists attain high density in continuously deforming peloton shapes. Density changes are generated by cyclists’ collective power output. At very low power output, riders tend to leave a lot of space between each other, and so density is comparatively low. As outputs and speeds increase, riders tuck in as closely as possible to others to obtain maximum drafting benefit, increasing density. At intermediate outputs/speeds, the peloton shape is roughly square or round and density is high. As cyclists’ outputs approach anaerobic threshold, the peloton begins to stretch into a line.

A fluid dynamics approach to peloton behavior

Certain basic properties of fluids, such as viscosity (internal fluid friction, or “thickness”), and its flow characteristics, like laminar flow (streamlined flow in which particle paths do not cross) or turbulent flow [1], appear to exhibit similarities to the “flow” properties of a peloton. In measuring liquid fluid properties (gasses are not considered here), liquid is conceptualized as flowing through a tube [1]. The fluid is considered to fill the tube, and its internal properties can be measured using parameters indicated by the dimensions of the tube (like tube diameter and volume). The Reynolds number is a dimensionless value that describes the transition between laminar and turbulent flows [1]. Generally laminar flow occurs at Reynolds numbers less than 2000; above 3000, turbulent flow is expected; between 2000 and 3000 the fluid flow is unstable, meaning flow may be laminar but easily perturbed into turbulence [1].

Although a peloton displays properties similar to liquid flow generally, a peloton is unlike a fluid flowing through a tube which constrains the shape of the fluid. The diameter of a tube may vary along the length of the tube, and this changes the “shape” of the fluid inside the tube, but the tube is an external constraint on the shape of the fluid inside the tube. Liquid by itself doesn’t generally flow in shapes of varying diameters, and on an open flat surface, the liquid will simply spread out to its minimum thickness.

By contrast, the shape of a peloton is continuously changing as a result of oscillations in the collective power of the riders. True, the course over which a peloton travels can vary in width and, if sufficiently narrow, the course does constrain the shape of the peloton. However, we can imagine a road of infinite width, and the peloton would still self-organize into its ordinary expected shapes, changing continuously and independently of the course width. As a result, if we want to find equivalencies between peloton flow and fluid flow, we need to account for this changing shape.

Constant and variable density

Another difference between peloton flow and liquid flow is that a peloton exhibits significant changes in density, unlike liquid fluids which are mostly incompressible [1].

In [2] a method used to calculate density showed that density falls as the peloton stretches. However, another conception of peloton density is that as long as the wheel spacing between cyclists is roughly constant, changing peloton shape by stretching does not mean density decreases. In other words, the peloton could be either stretched in a single-file line, or in a compact round shape, but the mass of cyclists per volume is still the same.

In the peloton fluid dynamical model proposed here, density can be set as a constant parameter despite continuous peloton deformation. To be sure, in conditions of low drafting such as up steep hills, or during full-out sprints, spacing between riders increases and peloton density falls. However, although low density is observed in periods of very low and very high output, a peloton retains high-density over a broad range of intermediate outputs, and density may be considered to be constant over this range.

Constant density is useful for this peloton fluid model. As a result we can maintain constant density, then apply an adjustment factor to the length and width of the peloton according to cyclists’ coupled outputs as a fraction of their mean maximum output. Both the length and width measurements have considerable effect on viscosity value and the Reynolds number, and so adjusting them appropriately is a key consideration.

Although conceptually the model applies a constant density parameter in a broad intermediate range of peloton speeds (the range in which the majority of peloton behavior occurs), it does allow for changing density. By adjusting the density slider between 9kg m^3, approximately the minimum density at which cyclists remain coupled by drafting (i.e. if cyclists are 1m behind and to the sides of others, or more, drafting benefit drops off dramatically – here this corresponds to about 18 cyclists in a 100m^2 area).

Application of Peloton-Convergence-Ratio (PCR)

In [2,3] we demonstrated the “Peloton-convergence-ratio” (PCR), which corresponds directly with the changing shape of the peloton. PCR is an equation that accounts for cyclists’ reduced power requirements in drafting positions, while also indicating cyclists output at any given moment as a fraction of their maximum sustainable output (MSO).

As PCR increases (i.e. as cyclists approach MSO), the peloton stretches, and conversely as PCR falls, the peloton resumes its compact formation. In this peloton fluid model, I apply PCR to adjust the shape of the peloton in direct proportion to the length which increases as PCR increases; inversely to width, which decreases as PCR increases (i.e. as the peloton stretches). When PCR = 1 for a peloton collectively, that means the all following (drafting) riders are at their maximum even with the benefit of drafting. This represents the extreme outputs for riders in a maximally stretched formation. Before reaching this point, however, we can think of riders adjusting their relative positions in a highly turbulent manner, and that as speeds are adjusted incrementally higher, each corresponding adjustment in position must happen faster than the previous adjustment, and hence the Reynolds number is higher. When PCR > 1, riders de-couple. Although there is a temporary decrease in density while cyclists remain in drafting zones, the globally coupled systems breaks down.

Applying PCR to account for cyclists’ power output relative to their maximums is important for a peloton model because these factors affect the force and velocity parameters of the fluid viscosity and Reynolds number equations, and scales them appropriately to typical peloton speeds and power output values. See Notes 3-5.

MSO can be adjusted, which can be thought of as changing “how easy it is” for the cyclist to travel at the given speed. A higher MSO, means the given pace will be easier for him/her, and conversely for a lower MSO.

Temperature-viscosity relationship

As temperature increases, viscosity falls, as the speed of interactions between molecules reduces friction between them [4]. Increasing the relative-passing speed is effectively like changing the temperature of the peloton, resulting in decreasing viscosity, as expected [1].

However, here I don’t address whether the equations for the relationship between temperature and viscosity [6] accord with the equations I’ve developed that adjust the shape of the peloton according to increasing speed, and hence the peloton viscosity and Reynolds number.

Things to try

So, with these considerations in mind, in my Netlogo peloton fluid dynamics model we can plug some realistic values into the model and see the resulting viscosity and Reynolds number, and make predictions as to the values at which laminar flow transitions to turbulent flow. Generally, we may predict that at appropriate combinations of PCR, relative passing speed, and peloton shape, turbulence sets in.

I used the following as constants: 100 cyclists 75kg each in a 10m * 10m grid * 1.5m (height of crouching cyclist on bike) yielding constant high density of 50kg m^3 (75kg * 100 / 150m^3) ; base peloton width of 10m -- equating to tube diameter; minimum peloton “side-area” of 12.4m^2, based on 5 cyclists on bikes 1.65m (tip of front-wheel to outside tip of rear-wheel) * 1.5m (height of cyclist’s head/shoulder in crouched position on bike) -- equating to parameter A in the viscosity equation (area of the fluid boundary layer).

Starting with these values, we can make adjustments to mean-peloton speed and passing speed to generate relative-passing speed. Generally, unless they are “attacking” to escape the peloton, cyclists do not pass each other much faster than between approximately 5km/h (1.39 m/s) and 10km/h (2.78 m/s) in normal peloton movement. Regardless, inputting any values you can see how viscosity and Reynolds number change in correlation to relative passing speed. Speeds in turn affect the drafting rate, and PCR, which affect the shape of the peloton (length and width).

You can adjust the MSO values for a drafting rider. As noted above, this affects PCR, and the comparative “ease” of pace for the drafting cyclist. It does not account for the front cyclist’s output, since most of the riders in the peloton are assumed to be drafting.

Results

As relative-passing speed is increased, viscosity falls and Reynolds number increases. When PCR > 1, viscosity is 0, and Reynolds number is negative.

Overall the results seem to accord reasonably well with what the physics literature says is the Reynolds number range at which to expect turbulence; i.e. above 3000, with an unstable region between 2000-3000 [1]. It also accords roughly with what we can expect in terms of phase transitions according to PCR, where the peloton is stretched at higher PCR. In terms of viscosity, the value is shown in N*m/s^2 (where 0.001 Nm/s^2 = .001 centipoise), and in the turbulent region, peloton viscosity is roughly equivalent to high viscosity fluids, like syrup or molasses [5].

However, the results indicate that the unstable region (Reynolds number 2000-3000) does not occur until the passing speed is about 3.65m/s, or slightly more than 13km/h. Intuitively, it seems that turbulence occurs at lower passing speeds than this. This suggests some of my initial assumptions are inaccurate, or some adjustments need to be made in the model overall -- or, indeed, that true turbulence as it would occur in analogous systems, does not emerge until passing speeds are > than 13km/h. I am inclined toward the two former options, however, and would want to check things quite a lot before I conclude the last option.

However, because the values are not extraordinarily outside the expected range, the model is promising in terms of demonstrating viscosity and the transitional regimes of laminar and turbulent flow.

Conclusions and model limitations

The model represents the passing speed of one segment of the peloton – essentially one single-file line on one perimeter of the peloton. If the standard viscosity model applies, we should assume that the speeds of each line or layer (shear flow) diminishes to zero as they approach the opposite side of the peloton. This of course does not occur in pelotons. Further, aside from a simplified single point-in-time change in speed which is assumed to represent an average among all passing cyclists, the model does not indicate other differences in speeds among cyclists within the peloton. Nor does it indicate trajectory changes, which together with a range of speed differentials among riders, might indicate the presence of vortices and eddies.

In addition, there is no attempt here to draw parallels to substantially more complex Navier-Stokes equations of fluid dynamics [6].

As discussed, there is a relationship between temperature and viscosity and Reynolds number. By increasing the passing speed relative to the mean-peloton-speed (i.e. increase in relative-passing-speed), the process is similar to increasing the temperature of the fluid. This results in decreasing viscosity, which accords with what is expected [4]. However, here I don’t address whether the equations I’ve developed to adjust the shape of the peloton according to increasing speed, and hence the peloton viscosity and Reynolds number, align with established equations for the relationship between temperature and viscosity [4].

Also, the application of PCR, used to adjust the shape of the peloton, may in principle be flawed. Nonetheless, this is an attempt to account for the changing shape of the peloton, in contrast to other fluids that conform to the shape of their containers.

While the proposed model is idealized, the key is that a peloton exhibits relative changes in position and speed among globally coupled cyclists, which, it seems, are amenable to a fluid dynamics analysis. The proposed model identifies some of the key parameters which are parallel to the standard fluid viscosity and Reynolds number, and indicates, at least, that it is possible to model a peloton as a fluid.

Overall, I well expect there are flaws in the model. These flaws may be conceptual and/or smaller ones that can be fixed without destroying the the basic principles.

NOTES

1. Peloton density p is based on:

  • p = mass/vol. Mass = 75kg (rider plus bicycle), multiplied by number of cyclists;
  • Volume = 150m^3 based on a selected area 10m x
    10m (a standard road width) x 1.5m (~height of slightly crouched cyclist on
    bicycle).
  • Here, assuming 70 cyclists in a 100m^2 area, density is 50kg*m^3 (1 cyclist for every 70cm of space laterally for ~14 across, and 1 for every 185cm lengthwise, for ~5 lengthwise).
While a peloton may be considered to be two-dimensional, to keep the fluid model consistent with actual fluids analysed as 3-dimensional, I’ve used a 3-dimensional density value for a peloton.

2. Relative-passing-speed = (passing-speed) - (mean-peloton-speed)

  • equivalent to delta x (distance displacement) in the standard viscosity equation

3. Side-area A = 12.4 + 12.4 * (14 ^ peloton-convergence-ratio), based on:

  • ~1.5m (height of crouched cyclist) * 1.65m (length of bike
    from tip of front wheel to outside tip of rear wheel), multiplied by the number of
    cyclists comprising the length of the single-file perimeter line, here 5.
  • Number of cyclists in single-file (5), is determined by 10m length (10mX10m grid) / 1.65m (bike length) + 0.20m (approx spacing between wheels).
  • 14 is the number of cyclists laterally who can fit in a 10m space, given shoulder width of 0.50m, and 0.20 spacing between cyclists side-to-side, for 10m/0.7m
  • exponent PCR, where PCR is <1, means that A increases proportionately to increasing PCR; i.e. as PCR increases and riders approach their maximum sustainable capacities, the peloton naturally stretches; Where PCR > 1, it means riders become de-coupled.

4. lateral-distance = 10 - 9.5 * (Peloton-convergence-ratio);

  • 10 is 10m, or the maximum width of the peloton and maximum density, in this illustration;
  • since one rider at shoulder width is ~0.5, the minimum width of the peloton is one-rider wide, or 0.5, so this is set so when PCR = 1, peloton cannot be less than 0.5m wide, and so the lateral distance diminishes proportionately to PCR, starting at 9.5m.
  • In order to correspond with PCR=1 and for the Reynolds number to show negative values if PCR > 1, I’ve set this so that when there is 0 lateral distance, it means the peloton is stretched to a single-file line (I could have set this so that PCR = 1 when the peloton was 0.5m wide (one rider wide), but then Reynolds number stays positive until lateral distance is 0).
  • passing is relative-passing-speed, which equals passing-speed - mean-peloton-speed
5. PCR = [Pfront - (Pfront * (D/100)))] / Pmso
where:
  • Pfront is the power output of the front rider at the given speed
    (the same power output that would be required by the drafting (following)
    rider to maintain the speed set by the front rider,if the following rider was
    not drafting - hence “required output”;
  • D is the percentage of energy saved by drafting, here estimated as
    1% per mile/hour (see computer code for conversion);
  • Pmso is the maximal sustainable output of the drafting cyclist.
PCR is incorporated into this fluid dynamical model because a cyclist’s capacity to pass others corresponds to the current peloton speed, the power required for the given speed, and the fraction that this power output is of his/her maximum capacity (MSO). The required output to travel the given speed is reduced by drafting benefit, which is accounted for by PCR. The closer the cyclist is to PCR = 1, the closer his/her passing capacity, or relative passing speed, is to zero. When relative passing speed is zero, the peloton may be said to be in streamlined, or laminar flow. Only when the relative passing speed reaches a certain threshold does peloton turbulence occur. Generally, physics literature indicates turbulence in fluids occurs around Reynold number 3000, although when between 2000 and 3000, the system is unstable and could be perturbed into turbulence [1].

6. Average-effective-pedal-force, based on:

  • rider power-output / pedal velocity of 1.78 m/s, where vp = cadence * crank-length * 2pi / 60 / 1000 using 100rpm, 170mm cranks;
see analyticcycling.com for further information on pedal-velocity and relationship to power

References

[a] Serway,R. 1996. 4th ed. Physics for Scientists & Engineers with Modern Physics. Saunders College Publishing, Philadelphia
[1] Serway,Raymond and Jerry Faughn. 1989 2nd. ed. College Physics. Saunders College Publishing, Philadelphia
[2] Trenchard, H., Richardson, A., Ratamero, E., Perc, M. 2014. Collective behavior and the identification of phases in bicycle pelotons. Physica A 405 (2014) 92-103.
[3] Trenchard, H. 2013. Peloton phase oscillations. Chaos Solitons & Fractals. 56 (2013) 194–201(56):194-201.
[4] http://en.wikipedia.org/wiki/Temperature_dependence_of_liquid_viscosity
[5] http://www.research-equipment.com/viscosity%20chart.html

[6] http://catdir.loc.gov/catdir/samples/cam031/00053008.pdf







Tuesday, April 15, 2014

Chasing the elusive convective 
dynamic in bicycle pelotons


         In our paper, Collective behavior and the identification of phases in bicycle pelotons [1]  we used data from two mass-start velodrome races to demonstrate the presence of two main phases of peloton dynamics: 1) a stretched phase, and 2) a compact phase exhibiting features of synchronized cyclist motion and more disordered collective motion.  

             We did not, however, clearly show what I have in past described as a "convective" phase, illustrated below in Figure 1 (from [1, 2]) and in Video 1*. Video 1* below contains a short clip of the sort of behavior I am hoping to quantify (not including the solo rider at the end). This phase behavior involves cyclists advancing up group peripheries as cyclists in central regions move effectively backward. This is analogous to a convection dynamic as "hot" riders advance, and "cooling" riders fall back. Although we did not demonstrate the effect in our paper, this does not mean the dynamic did not occur, but it was not sufficiently obvious in the data as derived from two small pelotons of 12 and 14 riders, in two short races both of less than 15 minutes each.


 
Video 1. Clip of peloton convective motion*


Figure 1. Illustrating the convective dynamic. Cyclists advance up peripheries (curved arrows), while riders in central region drift effectively backward (short thick arrow). Long arrow indicates direction of motion.

             In his paper [3], Erick Ratamero demonstrated a Netlogo agent-based model that simulated this convective effect in bicycle pelotons. From the perspective of clearly showing the collective vector pattern formation, Ratamero's simulation is extremely helpful. However, empirical data that clearly demonstrates this effect has still not been documented. The collective pattern formation of the cyclists in Video 1, for example, will have a sinusoidal appearance, which we know by tracking the trajectories of the simulated cyclists in Ratamero's model, as shown in Figure 2.


Figure 2. Sinusoidal pattern of simulated peloton of 100 cyclists in convective motion, applying method in [1] to quantify collective motion, and using Ratamero's MOPED peloton model [3]. Y-axis shows relative positions of each cyclist to all cyclists in the group.  X-axis is time. 

             Recently, I have purchased the rights to video footage of a stage of the Volta au Algarve, a professional bicycle stage race in Portugal. The footage is due to arrive any day now, and I am told it contains 1 hour of continuous overhead helicopter footage. I am optimistic the footage will show long-duration periods of the sort of behavior in Video 1 and that it will be sufficient to clearly establish the convective effect by applying the method of showing positional change as set out in [1].

            It is my objective also to demonstrate that this effect occurs in many multi-agent systems, including flocks, herds, and schools, and other biological collectives. 

            It seems that in order to establish that the principles underlying this effect are indeed self-organizing and naturally occurring (i.e. not an artifact of top-down human design, or simply a result of cyclists' racing strategy), it would be useful to demonstrate that the effect occurs in analogous systems which involve zero motivational influence; i.e. human motivations. Ideally, however, in order to isolate the pure physical principles that underlie the convective dynamic, we would go so far as to exclude even other animal systems in which individuals may also have strategic biases or motivations, and to seek analogous non-biological systems, if they exist or could be established by experimental design. 

           Such a non-biological system would involve purely physical forces, including a drafting effect that couples the system of particles or agents, a force to drive the collective in uni-directional motion, and some force that allows particles/agents from behind to move in a trajectory that allows for the hypothesized continuous convective motion. Barring a non-biological system like this, we may like to find analogous collective behavior among biological collectives that have minimal or no faculty to make volitional decisions, and whose motions are governed by very simple mechanisms, like bacteria or sperm, for example.

           Recently, I came upon this paper by Fortes, A., Joseph, D., and Lundgren, T. Nonlinear mechanics of fluidization of beds of spherical particles (1987) [4]. The authors describe experiments they did that demonstrate interesting two-dimensional dynamics of spheres in water. The authors used the apparatus shown below, which I have snipped and pasted directly from their published paper.  


Figure 3.  Image from the Fortes paper [4] of the apparatus they used.

            By dropping spheres from the top of the apparatus, the authors demonstrate a "drafting, kissing, and tumbling" dynamic, in which spheres following behind others in the direction of motion accelerate briefly relative to the one ahead in the lower pressure zone behind a leading sphere.  This is the drafting dynamic. Below, I have snipped and pasted Figure 5 from the author's published paper.




Figure 4. Image from the Fortes paper [4], which reads "Figure 5. Drafting, kissing, and tumbling in the vertical two-dimensional bed. The mechanisms are not affected by the inclination of the bed. Re=650."

            The Fortes results are very promising from my perspective, and I may be able to demonstrate the analogous convective effect by using a non-biological system similar to the Fortes system. Of course, I would still like to see if the effect occurs in bacteria and sperm and other similar systems, as this does not seem to have been documented. Nonetheless, if we have a drafting effect among falling spheres in water, we have two of the main force considerations that I think are necessary to demonstrate a convective effect: forward motion (here, induced by gravity), and an attractive force by drafting. 

            My hypothesis is that a small modification to the Fortes et al. apparatus may allow for a set of spheres to tumble two-dimensionally in a convective fashion. The modification I want to try is to curve the apparatus bed laterally. This curve will need to be sufficient to allow spheres to tumble past others and be forced to the peripheries of the group, and then to fall inward toward the bottom of the curve. It seems likely the effect, if it occurs at all, will only occur at the appropriate threshold apparatus angle and bed curvature. The angle and bed curve will dictate the collective sphere velocity, their corresponding drag reduction by drafting, and their relative acceleration at the front of the group toward the bottom of the curve. The reduction in drag due to drafting will, it seems, have to be sufficient to offset the loss of velocity in moving up the curve laterally, while the acceleration down the curve toward the front of the group will have to be greater than the velocity of those spheres rolling down the middle at the bottom of the curve.

           This bed curvature replicates a natural inclination for cyclists at the head of a group to gravitate toward a laterally central position (assuming no cross-wind). To show this position, in Figure 1 note the rider at the very top of the image - this rider would be in the "lateral center" of the race course.  It is not uncommon for more than one such "lateral center" to occur, each being offset from the center obviously, but well away from the edges of the course.

           I suspect that riders tend to gravitate toward this laterally centralized position at the head of the peloton because the lateral center represents physically the safest region between the lateral boundaries of the course; allows maximal peripheral view; multiple options for a line in which to drop backwards if so chosen; maximal options to adjust motion in response to passing movement from behind; and represents the most efficient position ahead of any curves in the road ahead. It will also be interesting to observe how this occurs in other flocking systems, as one suspects this formation is a universal self-organized one. 

          I have prepared a preliminary version of such an apparatus bed as discussed, shown in Figures 5a and 5b. The lateral curvature is shown in the left-hand image (albeit only in small degree) and the spheres at the bottom of the apparatus are shown in the right-hand image. However, the curvature needs to be modified and other modifications to the apparatus are required to make experimentation more efficient.  

         
Figures 5a and 5b. The proto apparatus for replicating the convective effect in a system of falling spheres in a viscous fluid. Figure 5a shows my attempt at forcing the bed to curve laterally.  Figure 5b shows the spheres at the bottom of the apparatus in a laundry soap fluid.  

           Since the apparatus requires modifications, I cannot of course report any results at this stage. Perhaps it will be entirely a bust, I do not know at this time.  However, I have been much inspired by the Fortes paper. In addition to this, I will be looking forward to analyzing the footage from the Volta au Algarve race, although that may take me all summer to do.



References and notes

[1] Trenchard, H., Richardson, A., Ratamero, E., M. Perc. 2014 Collective behavior and the identification of phases in bicycle pelotons, Physica A, Vol 405, 1 July 2014, 92–103

[2] Trenchard, H. 2013. Peloton phase oscillations. Chaos, Solitons & Fractals,Vol 56, November 2013, Pages 194–201


*Home video-cam recording of a live broadcast on http:\\mypremium.tv; Eurosport T.V. I am not certain what race it is from. I have not obtained the rights to use this video. 


[3] Martins Ratamero, Erick. 2013. MOPED: an agent-based model for peloton dynamics in competitive cycling. In: International Congress on Sports Science Research and Technology Support, 2013, Vilamoura, icSPORTS 2013, 2013.

[4] Fortes, A., Joseph, D., Lundgren, T. 1987. Nonlinear mechanics of fluidization of beds of spherical particles J. Fluid Mechanics, vol 177, p 467-483 


Saturday, March 8, 2014

Our paper to be published in Physica A

A couple of quick updates.

Our paper: Trenchard, H.. Richardson, A., Ratamero, E., Perc, M. "Collective behavior and the identification of phases in bicycle pelotons" will be published in a physics journal called Physica A. 

http://www.sciencedirect.com/science/journal/03784371

We're not sure yet in what issue the will be included, but I am anticipating a summer issue, possibly as early as June. 

I will also be attending the MIT Collective Intelligence conference in Boston, June 10-12, where I will present an overview of this paper. 

http://collective.mech.northwestern.edu/

I will likely make a submission to a conference in workshop in Vancouver Evolutionary computation (EC) and multi-agent systems and simulation (MASS), which is part of the Genetic and Evolutionary Computation Conference (GECCO-2014). This would be a simple demonstration of our positional-change method using Netlogo. 

https://sites.google.com/site/ecomassworkshop/

It looks like I can acquire some continuous overhead footage of Stage 5 of the Volta Algarve. I am hopeful that footage will be good enough to make further publishable findings.  

Thursday, November 21, 2013

A Peloton Palette



In August I took video of a number of track races at the B.C. Provincial championships. I was able to get very good video of two races in particular, the women's points-race, and the women's scratch race.  


                               Figure 1. Women's points race. 2013 B.C. Provincial championships

The two graphs below contain data from the women's points race. The top graph shows the positional changes for each of fourteen cyclists; the lower graph shows peloton speed.

The values on the left indicate the relative position of the rider: the closer to 1, the farther toward the back of the pack the cyclist is.  The closer to 0, the closer to the front the cyclist is. So, we can imagine the pack as facing downward on the page.  Ignoring the letters at the top for now (which indicate peloton phases, which I do not discuss in this post), we can see that regions where curves are most dense are periods when there was high positional change among the riders.  The regions where curves are straight and horizontal are periods when the riders maintained stable positions (i.e. they "held" their positions during these periods). 

The graph tracks very nicely how riders within the group shifted their positions relative to each other, determined simply by counting the number of riders ahead, not counting riders directly beside each other, divided by the total for a ratio <1. It is a very useful method of indicating phases of peloton dynamics. The graphs combined are a very nice static representation of an entire race, and if we follow each curve individually or pick one or two at random, we get a good sense of how they moved in the pack over the course of the race. 

    Figure 2. Top graph shows positional change among 14 cyclists. Letters at top indicate phases and sub-
    phases (not discussed in this post). The squiggly arrow at the top shows a rider who had been lapped.


Now below is a positional change graph for 16 cyclists from my Peloton 5.5. simulation. (See Figure 8 for an enlarged view of a typical simulated peloton). We can see similar regions of high positional change and periods of stability. Here the periods of stability are comparatively long-term.



     Figure 3.  Positional change for 16 simulated cyclists (PCR .49) for roughly 7 minutes of run time.


For context, below is a graph tracking one single cyclist's positional change looks like. The circle shows the cyclist being tracked, and the red graph in the middle shows its positional change over time. The curve shows how the rider started near the front of the group, gradually shifted toward the back, and then gradually shifted toward the front again. 




    Figure 4. Tracking positional change of one simulated cyclist.  There are 200 simulated riders in the
    peloton above. Red curve shows positional change of rider in circle. 


Below is a similar graph tracking 50 of 60 simulated cyclists. It is much richer, and again we can clearly see regions of high positional change and period of stability, as well as mixed phases. 

Figure 5. Positional change for 48 simulated cyclists. 


To me it is somewhat reminiscent of a Jackson Pollock abstract painting, perhaps a little like the one in Figure 6. Interestingly, Jackson Pollock paintings have been found to contain fractal patterns. Here is a link to Marcus du Satoy's discussion of this topic.  http://www.youtube.com/watch?v=sDXMRN2IZq4


                                            Figure 6. Jackson Pollock painting 


In Figure 5 and 7 (below), we may consider mixed phases as containing "eddies", in that there are subsets of cyclists within the group who are exchanging positions, while others are holding their positions. There are gaps in the graph, which indicate regions when riders were side-by-side. As in the real life graph (Fig 2), when cyclists were directly side-by-side, they were not counted as being ahead or behind. So side-by-side riders have the same position value - these appear as "holes" is in the graph. Where we see regions of long-range diagonal movement among most of the cyclists, this indicates whole peloton rotations, much like the convection pattern I have spoken of in previous blogs, and as Erick Ratamero presented evidence for in his paper (3).

 

  Figure 7. Positional change for 50 of 60 cyclists, roughly 10 minutes of run time. Note the clear transitions
  between periods of high positional change periods of stability.


                           
                                Figure 8. Enlarged view of typical peloton from my Peloton 5.5
                                model (version slightly modified from that presented in my paper "Peloton phase
                                oscillations"

I believe we are bound to see similar kinds of patterns and transitions of high positional change and low positional change in a large variety of collective phenomena. What palettes of positional change may we find among other such collectives? Where else will find the Jackson Pollocks of nature, embedded deeply within the patterns of collective interaction?

Of particular interest to me of course are American coot collectives, and I hope to do some additional research regarding coots this winter. The challenge for natural collectives like coots, or flocks of starlings or geese, for example, is in obtaining video or other data that can be accurately analyzed for positional change among flock members. Not easy among three dimensional flocks from great distances, but possible with the right conditions.


                               Figure 9. Coots on Elk lake (5)


References

1. Marcus du Satoy  http://www.youtube.com/watch?v=sDXMRN2IZq4

2. Pollock, Jackson. 1952.  "Blue-Poles" http://www.dailyartfixx.com/tag/jackson-pollock/

3. Ratamero, Erick. 2013. MOPED : an agent-based model for peloton dynamics in competitive cycling
In: International Congress on Sports Science Research and Technology Support, 2013, Vilamoura, icSPORTS 2013

4. Trenchard, H. 2013. Peloton phase oscillations. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, pp. 194-201

5. Trenchard, H. American Coot Collective On-water Dynamics. Nonlinear Dynamics, Psychology, and Life Sciences, Vol. 17, No. 2, pp. 183-203.

Thursday, November 14, 2013

Video demonstration of Peloton 5.5

In the video link below I discuss and demonstrate my Peloton 5.5 model, using Netlogo.  The model includes a few refinements over the version I presented in my recently published paper [1]. In that paper I apply my “peloton convergence ratio" (PCR) equation and examine peloton phase changes as a function of fractions of PCR. In that paper I also incorporate a “passing principle” whereby I suggest that when there is a significant power output differential between front and drafting riders, it is inevitable that drafting riders with greater relative energy stores will pass those ahead, but this passing capacity falls as riders approach maximal sustainable outputs.
          In Peloton 5.5 I break down PCR into its constituent elements: a fixed power output for a front non-drafting rider, a variable drafting rate -- which returns a correspondingly reduced power output for drafting riders relative to a riders in front positions -- and a variable MSO (“maximal sustainable output”).  I set an arbitrary output for the front rider, and allow the other variables to be adjusted returning a PCR that describes the output relationships between the front and the following riders.  
        With this I demonstrate two extreme peloton phases: the low-density stretched phase in which PCR approaches 1 in which little or no passing occurs, indicating that the power output of the following rider approaches her maximal sustainable output; a high density, high passing phase in which PCR is closer to zero. I then go on to show  mid-range of PCR in which we see oscillations between phase states as well as simultaneous occurrences of them. 
http://www.youtube.com/watch?v=-gmy520EEW4&feature=youtu.be

In a subsequent post I hope to discuss a recent peloton model created by Erick Ratamero (University of Warwick), which he presented at a conference in September.  He, myself, and Ash Richardson (University of Victoria), are in the stages of preparing a collaborative paper in which we look at the data I've obtained from two track races at the recent B.C. track championships.


Trenchard, H. 2013 Peloton Phase Oscillations. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, pp. 194-201

Monday, September 9, 2013

Geology in Motion: Tour de France and the dynamics of bicycle pelotons

Here is a link to a blog post by Susan Kieffer, in which she summarizes an earlier paper of mine:

Geology in Motion: Tour de France and the dynamics of bicycle pelotons

Her blog is also great and very interesting, I might add.

Sunday, September 8, 2013

Finally, a published paper; recent tweaks to my model, and current plan for next paper.

At last I have a paper published in an academic journal. The online version can be found in the link below, while the hard copy version is out in November, it appears. It is included in a special issue "Collective Behavior and Evolutionary Games", edited by Matjaz Perc and Paolo Grigolini.

    http://www.sciencedirect.com/science/article/pii/S0960077913001574


Full citation: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena (2013), pp. 194-201 DOI information: 10.1016/j.chaos.2013.08.00



       In the paper I refer to my Netlogo model, which simulates the peloton as it oscillates between two primary phases: a low power output phase, and a high power output phase. I show how the peloton changes its pattern formations as a result of these collective power output changes.  
       After submitting that paper, I made a few tweaks to my model. The changes were small but resulted in increased realism. Also, instead of simply using what I call the "peloton convergence ratio (PCR)" as the main tunable parameter, I use other parameters which are incorporated into an actual equation that produces the PCR. Also, I included a new graph to show positional changes, which is an important indicator of the phase boundaries. Here a "phase" is simply a distinctive collective pattern formation. As cyclists know, peloton pattern formations are constantly changing, and hence "phase changes" and "transitions" between phases.

       To illustrate, look at image A, below. I've set the drafting range and maximal sustainable output ("MSO") parameters (two blue sliders immediately below the black "road") such that when they combine (i.e operate according to an equation) they produce a certain Peloton Convergence Ratio, or PCR, (second graph from the left). In this case the PCR is comparatively low. 

       Note that the graph on the left shows the power output of a front rider (black line), while the green line shows the power output of the drafting rider. 

       At this comparatively low PCR, the positional change is high, meaning the riders rotate positions frequently. This is realistic because the drafting rate is high and drafting riders are well "rested" for passing those in front. This would characterize a high density phase, low PCR phase.


A.



       However, in image B, below, I lowered the drafting rate. This has the effect of bringing the power output of the following rider closer to that of the front rider, and hence PCR increases toward 1 (see the steps on the green line for the power output of the drafting rider, and the corresponding step up in PCR). Notice how the peloton begins to stretch (also see the red line on the graph "Peloton Length"), and see the corresponding drop in positional change. The decrease in positional change means it is getting more difficult to pass.

B.


       In image C below, I dropped the drafting rate a bit more. As noted, this brings the power output of the drafting rider closer to the output of the front rider, and increases PCR. Notice how the positional change dropped at one point dramatically, and then began to fluctuate. Here, because the world "wraps" around in a cylinder, as the peloton stretches, riders get "lapped" fairly quickly. This is largely why we see the significant jumps in the positional change values, although in the appropriate PCR range we also see self-organized oscillations, where stretching and low positional change occurs for certain periods, followed by increased density and higher positional change, and so the cycle continues for unpredictable durations.

C



       So, this summarizes the result of my paper, although these recent tweaks connect the simulation even more clearly to the actual physical parameters we see in pelotons: drafting rate, power output of drafting rider relative to front rider, and riders' maximal sustainable outputs. These recent tweaks confirm the results of the published paper.

       My plan at this point is to gather some data from video footage I took of some mass-start events at the Provincial Track championships, and to demonstrate how rates of positional change show phase boundaries.
       Of course I would also like to show how these principles apply to other natural biological systems. The logical next place for me to look for this is American coot formations, since I have already seen and documented similar formations. The underlying mechanism for coot formations remains a hypothesis only, but this simulation itself should have, I think, applications in many different systems.